Advanced PSEO Data Use

APIls and Data Integration for Deeper Analysis

August 28, 2025

Presenter and Host

9.
5
Christopher Pefia, PhD : Annika Many
Assistant Professor of the Practice, University of Denver President & CEO, EDU-PM

Intern Supervisor, PSEO Coalition Member Engagement Consultant, PSEO Coalition

Introduction

PSEO Coalition Summer Webinar Series

June 26 July 29
Getting Started with the Using PSEO Data in
PSEO Explorer: Practice:
Navigating Tools, Insights, and Key
Postsecondary Considerations

Employment Outcomes

=

August 28

Advanced PSEO Data
Use:
APIls and Data
Integration for Deeper
Analysis

Agenda

e Need for Data Pipelines
e Supplemental Data for Context
® |PEDS (Data Download)
® Living Wage Calculator (Web Scraping)
® U.S. Census Bureau (API)
e PSEO Data
® Working with the PSEO API

® Python Demo

=

Learning Objectives

By the end of this webinar, participants will be able to:

|ldentify and access key data sources relevant to postsecondary
outcomes.

Explain the role of APIs in accessing structured data and recognize
how they differ from bulk downloads or web tools.

Retrieve, structure, and integrate postsecondary outcomes data for
analysis.

Apply a reproducible Python workflow to query and merge
postsecondary outcomes data for policy, planning, or institutional
decision-making.

Need for Data
Pipelines

What is a Data Pipeline?

A data pipeline is an automated series of steps designed to move, transform,
and process raw data from various sources into a usable format at a destination.

EXAMPLE

An IR analyst wants to create a single dataset for peer analysis with key
institutional indicators such as retention rate, graduation rate, and spend per
student FTE using data from IPEDS surveys.

=

Planning the Task Through Pseudocode

Pseudocode is a simplified method of describing the steps of an algorithm using
plain language mixed with language-independent programming conventions.

WHY WRITE PSEUDOCODE?
e Clarify logic

e Plan before coding

e Communication

e Debugging

=

IPEDS

What is IPEDS?

The Integrated Postsecondary Education Data System (IPEDS) is a set of
institutional data collected through surveys each year for colleges and
universities that receive Title |V federal financial aid.

ACCESSING THE DATA
e Web analysis tools
Custom data files
Complete data files
Access database

Locating Directory Information

I P E D S Integrated Postsecondary Data Tools | Help Desk 1 866-558-0658
Education Data System e = Save session Help b MAIN MENU

Complete Data Files

Data Release Info

Years & Surveys

2023 v | | Institutional Characteristics v |

Data files are available in ZIP format.

Year Survey Title Data File Stata Data File Programs Dictionary
Institutional Directory information
2023 s (updated January HD2023 HD2023_STATA SPSS, SAS, STATA Dictionary
Characteristics
2025)
Educational offerings,
Institutional organization, services <o
2023 Characteristics and athletic 1C2023 IC2023_STATA SPSS, SAS, STATA Dictionary
associations
Institutional Student charges for A
2023 Characteristics academic year I1C2023_AY IC2023_AY_STATA SPSS, SAS, STATA Dictionary
programs
Institutional Student charge; by g
2023 Characteristics program (vocational I1C2023_PY IC2023_PY_STATA SPSS, SAS, STATA Dictionary

programs)

Breaking it Down

|ldentify the URL to the requested Data Center file.
Download the ZIP file from the URL.

Unzip the ZIP file.

Extract the CSV file in the extracted folder.

Delete the ZIP file.

Read the CSV file into a Pandas data frame.

SRS

PRO CHALLENGE
Build a web scraper to create a dictionary of file URLs.

=

Sample Code

Step 3: Fetch the most recent data from the IPEDS Institutional Characteristics survey.

Define the parameters for downloading and unzipping the IPEDS survey file.
url = 'https://nces.ed.gov/ipeds/datacenter/data/HD2023.zip"
zip_filename = 'HD2023.zip'

Download the ZIP file.
print(f"Downloading {zip_filename}...")
response = requests.get(url)
response.raise_for_status()

Save the ZIP file to disk.

with open(zip_filename, "wb") as f:
f.write(response.content)

print(f"Downloaded {zip_filename}.™)

Extract the contents of the ZIP file.

print(f"Extracting {zip_filename}...")

with zipfile.ZipFile(zip_filename, 'r') as zip_ref:
zip_ref.extractall()

print(f"Extracted contents of {zip_filename}.")

Delete the ZIP file.
os.remove(zip_filename)
print(f"Deleted {zip_filename}.")

Read the data into a data frame.
ipeds = pd.read_csv("HD2023.csv", encoding="latinl", dtype={"UNITID":str, “OPEID":str})

Joining the Data

To join the PSEOQO data to IPEDS data, we need a join field: OPEID

METHOD
1. Merge the PSEO data to the IPEDS IC survey data on institution = OPEID.
2. To merge other IPEDS survey data, merge those data to the IPEDS IC survey
data first on unitid, then merge to the PSEQO data.

Living Wage
Calculator

What is the Living Wage Calculator?

The MIT Living Wage Calculator estimates the local wage that a full-time worker
requires to cover the costs of their family’s basic needs where they live.

LEVELS OF ANALYSIS

e State

e County

e Metropolitan Statistical Area (MSA)

=

Building a URL

E] - Living Wage Calculator - Count' X + v —] V2
&

[C O 8 livingwagemitedu/states/08/locations w Y @ signin |

Living Wage | calculator Methodology ~FAQs Contact

Counties and Metropolitan Statistical Areas in Colorado

Select a link below to display the living wage report for that location:

Show results for Colorado as a whole

COUNTIES

Adams County Crowley County Gunnison County Mesa County Rio Blanco County
Alamosa County Custer County Hinsdale County Mineral County Rio Grande County
Arapahoe County Delta County Huerfano County Moffat County Routt County
Archuleta County Denver County Jackson County Montezuma County Saguache County

Locating the Data

1ADULT 2 ADULTS (1 WORKING) 2 ADULTS (BOTH WORKI

0 Children @ 1Child 2Children 3 Children @ 0Children @ 1Child 2 Children 3 Children @ 0Children @ 1Child 2 Children

- L3ving $27.01 | $49.85 $64.45 $81.99 $36.66 | $43.11 $47.34 $55.43 $18.33 | $27.28 $34.64

Wage
P“I’\;’:;Y $7.52 $1017 | $12.81 $15.46 $10.17 | $12.81 $15.46 $18.10 $5.08 $6.41 $7.73
M\'I'\‘,'a";:'“ $14.81 $14.81 $14.81 $14.81 $14.81 $14.81 $14.81 $14.81 $14.81 $14.81 $14.81

Breaking It Down

©COoNOoOOkWODN -~

¢

Declare the base URL.

Create a dictionary of state codes and FIPS codes.

For each state in the dictionary, build a URL.

For each URL from the dictionary, go to the state webpage.

For each state page, read in the list of MSAs into a dictionary.

For each MSA in the dictionary, build a URL.

For each URL from the dictionary, go to the MSA webpage.

Locate the living wage calculation table.

Read the defined columns from the table into a Pandas data frame.

Pseudocode

‘_\
Q SO®NOUAWN

Import required libraries.

Define FIPS codes and state names.

Define base URL for retrieving the data.

Set headers to simulate a browser request.
Define function to parse currency values.

Define function to retrieve living wage data.
Define expected wage keys.

Initialize data storage.

Loop through states to retrieve living wage data.
Write data to a CSV file.

Sample Code

Step 6: Define function to retrive living wage data.

def get_all_annual_wages(url):
try:
response = requests.get(url, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
tables = soup.find_all('table')

if not tables:
print(f"No tables found at {url}™)
return {}

We know the data is in the third row (index 2)
rows = tables[@].find_all('tr')
if len(rows) < 3:
print(f"Expected row not found in table at {url}")

return {}

wage_row = rows[2] # Third row
cols = wage_row.find_all(['td', 'th'])

Expected 12 columns of wage data starting from index 1
if len(cols) < 13:
print(f"Not enough columns in wage row at {url}™)
return {

Define keys in the exact order they appear in the table
keys = [

“ladult_@children”, “"ladult 1child”, "ladult_2children”, "1adult 3children”,

"2adultsiworking @children”, "2adultslworking_lchild", “2adultslworking 2children", "2adultslworking_3children”,

"2adults2working_@children”, "2adults2working_lchild", “"2adults2working_2children”, "2adults2working_3children™

wages = {}

for i in range(12):
value = parse_currency(cols[i + 1].get_text(strip=True)) # +1 to skip Label column
wages[keys[i]] = round(value * 2080, 2) if value is not None else "N/A"

return wages

Joining the Data

To join the PSEQO data to the living wage data, we need a join field: State

METHOD
1. Merge PSEQO data with label_institution.csv on institution to get
institution_state (state code) and FIPS.
2. Merge PSEQO data to living wage data on institution_state or FIPS, depending
on what is available.

=

U.S. Census
Bureau

U.S. Census Bureau Data

The U.S. Census Bureau provides a wide variety of data from sources such as the
American Community Survey (ACS).

ACCESSING THE DATA
e Table builder

e |PUMS

o API

=

What is an API?

An Application Programming Interface (API) is a set of rules and tools that allow
different pieces of software to communicate with each other.

APIls often return data in JSON format.
BASIC COMPONENTS

e Request — How to ask for the data. (GET/FOR)
e Response —What you'll get back.

=

APl As a URL

https://api.census.gov/data/timeseries/pseo/earnings?get=Y1_P50_EARNINGS,
LABEL_INSTITUTION&for=us:1

JSON Raw Data Headers

Save Copy Collapse All Expand All Y Filter JSON
v e:
o: "Y1_P50_EARNINGS"

1: "LABEL_INSTITUTION"
2: "us™
vi:
o: “44129"
: [“Institutions in Alabama"
2 3%

“Institutions in Arizona"

e: “40501"

1: “Institutions in Colorado"

When to Use an API

Fresh, real-time data

Automation and efficiency

Selective access (only what you need)
Consistency and standardization
Scalability

Access to dynamic services (not just data)

Before You Begin

EBE An official website of the United States government Here's how you know ~

United States*®

Census

Request a U.S. Census Data API Key

Organization Name ‘

Email Address ‘

[] 1agree to the terms of service

REQUEST KEY

Pseudocode

SRS

Import required libraries.

Define the API key and survey year.

Define the base URL for retrieving the data.
Define the parameters for retrieving the data.
Use the API to call for the data.

Write the data to a CSV file.

Sample Code

Step 3: Define the survey year for retrieving the data.

year = “2023"

Step 4: Define the base URL for retrieving the data.

base_url = f"https://api.census.gov/data/{year}/acs/acsl/subject”

Step 5: Define the parameters for retrieving the data.

params = {
"get": “"NAME,S1501 C@1 @61E", # Table and column reference for the data.
"for": “"state:*",

"key": api_key

=

Sample Code

Step 6: Use the API to call for the data.

response = requests.get(base_url, params=params)

if response.status_code == 200:
data = response.json()
headers = data[@]
rows = data[1:]

df = pd.DataFrame(rows, columns=headers)
df = df.rename(columns={

"state": "State Code",

"NAME™: "State Name",

"S$1501_C@1_@61E": “"Median HS Grad Earnings”,
)

df["Median HS Grad Earnings"] = pd.to_numeric(df["Median HS Grad Earnings"], errors='coerce')
df = df.sort_values(by="State Code", ascending=True)

column_order = ["State Code", "State Name", "Median HS Grad Earnings”]
df = df[column_order]

df.to_csv("median_hs_earnings_by state.csv"”, index=False)

print("Data saved to median_high_school_earnings_by state.csv")

else:
print(f"Error fetching data: {response.status_code} - {response.text}")

Joining the Data

To merge the PSEQO data to the census earnings data, we need a join field: State

METHOD
1. Merge PSEQO data with label_institution.csv on institution to get

institution_state (state code) and FIPS.
2. Merge PSEOQO data to census data on institution_state or FIPS, depending on

what is available.

PSEO API

PSEO Earnings — Selected Variables

Name Label

AGG LEVEL PSEO Aggregation Level

CIP LEVEL CIP Code Level

CIPCODE CIP Code

DEGREE LEVEL Degree Level

for Census API FIPS 'for' clause
GEO ID Geographic Identifier Code
GEOCOMP GEO_ID Component

GRAD COHORT First Year of Graduation Cohort

Number of Graduation Cohort Years

GRAD COHORT YEARS

n Census API FIPS 'in’ clause

INST LEVEL Institution Level

INST STATE FIPS Code of State of the Institution
INSTITUTION Institution

NATION Nation

SUMLEVEL Summary Level code

ucgid Uniform Census Geography Identifier clause

Y1 GRADS EARN

Count of Employed Graduates in Year 1

Y1 IPEDS COUNT

Count of IPEDS Reported Graduates of Programs Included in Year 1 Eamings

Y1 P25 EARNINGS

Eamings 25th Percentile in Year 1 (2022 Dollars)

Y1 P50 EARNINGS

Eamings 50th Percentile in Year 1 (2022 Dollars)

Y1 P75 EARNINGS

Eamings 75th Percentile in Year 1 (2022 Dollars)

PSEO Flows — Selected Variables

Name Label

AGG LEVEL PSEO Aggregation Level

CIP LEVEL CIP Code Level

CIPCODE CIP Code

DEGREE LEVEL Degree Level

DIVISION Division

for Census API FIPS 'for clause
GEO ID Geographic Identifier Code
GEOCOMP GEO_ID Component

GRAD COHORT

First Year of Graduation Cohort

GRAD COHORT YEARS

Number of Graduation Cohort Years

n

Census API FIPS 'in' clause

INST LEVEL

Institution Level
INST STATE FIPS Code of State of the Institution
INSTITUTION Institution
NAICS NAICS Industry Code
NATION Nation
SUMLEVEL Summary Level code
ucgid Uniform Census Geography Identifier clause

Y1 GRADS EMP

Count of Employed Graduates in Year 1

Y1 GRADS EMP INSTATE

Count of Graduates Employed in Same State as Educational Institution in Year 1

Sample Code

3. Get directory data for Arapahoe Community College.

Create a list to store the fields to retrieve.
fields = |

"INSTITUTION",

"LABEL_INSTITUTION",

"INST_STATE",

"LABEL_INST_STATE"

List the parameters for the GET request.

params = {

"get": ",".join(fields), # Concatenate the List of fields into a single string.
"INSTITUTION":"@0134600", # Filter records to Arapahoe Community College only.
“forT i Tus 21, # Required geography for the API.

"key": key

Send the GET request.
response = requests.get(url, params=params)

Check the response for errors. If none, write the data to a CSV file and display the first few records.
if response.status_code == 200:

data = response.json()

Convert to pandas DataFrame

df = pd.DataFrame(data[1:], columns=data[@])

df.to_csv(“pseoe_institutions_acc.csv", index=False)

print(df)
else:

print(f"Error {response.status_code}: {response.text}")

Use the Metadata

Post-Secondary Employment Outcomes (PSEOQ)

Post-Secondary Employment Outcomes (PSEQ) are experimental tabulations developed by researchers at the U.S. Census Bureau. PSEQ data
provide eamnings and employment outcomes for college and university graduates by degree level, degree major, post-secondary institution, and state
of institution. These statistics are generated by matching university transcript data with a national database of jobs, using state-of-the-art
confidentiality protection mechanisms to protect the underlying data.

The PSEO are made possible through data sharing partnerships between universities, university systems, State Departments of Education, State “
Labor Market Information offices, and the U.S. Census Bureau. PSEQ data are available for post-secondary institutions whose transcript data have
been made available to the Census Bureau through a data-sharing agreement. EXPERIMENTAL
DATA
Download Public-Use Data —PSEO Help
L bout PSEOQ by choosi f the link:

We release two classes of files for each of the tabulations, Graduate Eamings and Employment Flows: b:::)c i D L e S A S

« Comprehensive dataset, which includes all institutions and crossings

« State datasets, which include all institutions in a state and are a subset of the above release « PSEQ Methodology and Data Sources

« PSEQ Data Notices m (427 KB)

Data files are provided in zipped CSV and XLS formats and can be downloaded below. The XLS files have variable labels attached, but do not « PSEO Data Schema for Most Recent Release
include all the possible rows from Employment Flows, due to size constraints. « PSEO Code Samples

« PSEQ Technical Documentation m (213 KB)

« Technical Appendix for PSEO Protection System
P (225 KB)

| View Files | « BSEO Partnership SOPs

State/Territory: \ All v }

Important Considerations

Variables must be identified correctly to avoid errors.

Consider how you want to filter data and using which variables.
Consider whether it is possible no data will be retrieved.

Must specify a geographic clause (e.g., for=us:1)

DEFAULTS

e DEGREE_LEVEL defaults to 05 (Bachelor’s).

e GRAD_COHORT defaults to 0000 (All Cohorts).

e CIPCODE defaults to 00 (All Instructional Programs).

=

Best Practices

e Start simple.
o Build your query by choosing one endpoint and narrowly targeted filters.

e Include labels.
o Ensure comprehensibility by requesting label fields.

e Prepare for potentially null data.
o Plan for what to do when no records are returned based on the selected filters.

Python Demo

Feedback

Please complete this brief survey on
the PSEOC Summer Webinar Series
2025.

We value your feedback on this
series and ideas for future
educational opportunities.

Survey link

Coming Up

PSEO Coalition Virtual Showcase: Research & Dashboards
Using PSEO Data

September 25, 2025
2:00-4:00PMET

https://pseocoalition.org/events

=

https://pseocoalition.org/events/

PSEO
Resources

PSEO Resources

PSEO Coalition

pseocoalition.org

Resource Library

pseocoalition.org/resource-library/

aﬁ PSEO Datasets

PSEO Explorer lehd.ces.census.gov/data/pseo_exper

I I I I lehd.ces.census.gov/applications/pseo imental.ntml

=

